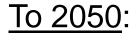

The challenge of sustainable agriculture in a food-insecure world

Tim Benton UK Champion for Global Food Security



Growth in food demand

Africa and Other Developing Regions Make Up an Increasing Share of World Population.

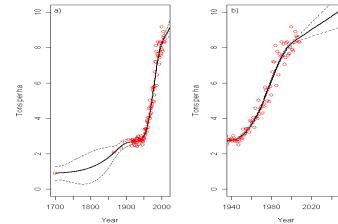
Source: UN Population Division, World Population Prospects: The 2006 Revision, Medium Variant (2007).

Population will increase **35%** (7.0-~9.2 bn)

Developing world: food demand increases >2x population growth

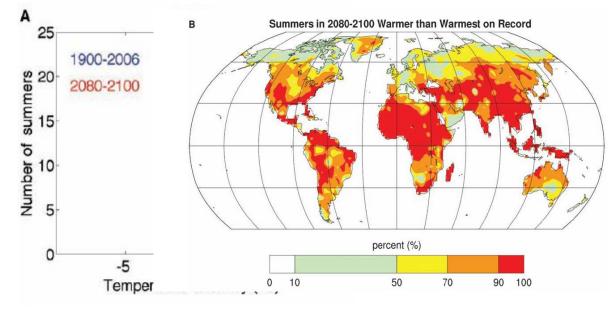
Therefore **70-100%** more food needed

Global


Food Security

Sustainable, healthy food for all

Barriers to production


- Biofuels taking land out of food production
- Movement to a low carbon economy will affect agriculture and food transport
- Yield increase slowing
- Global warming will on average reduce yields

Climate change: localised crop failures will increase

"...in France and northern Italy, where over **30,000** people perished from heat-related causes..... Italy experienced a record drop in maize yields of **36%** from a year earlier, whereas in France maize and fodder production fell by **30%**, fruit harvests declined by **25%**, and wheat harvests (which had nearly reached maturity by the time the heat set in) declined by **21%**"

Global Food<u>Security</u>

Sustainable, healthy food for all

Battisti 2009 Science

We probably need ~2x more food whilst our ability to supply food is reduced due to biofuels, climate change and low-input farming

Figure S1. Extent of Global Agricultural Lands. This map illustrates the global extent of croplands (green) and pastures (brown), as estimated from satellite- and census-based data by Ramankutty *et al.*¹. According to U.N. FAO statistics, croplands currently extend over 1.53 billion hectares (~12% of the Earth's land surface, not counting Greenland and Antarctica), while pastures cover another 3.38 billion hectares (~26% of global land). Altogether, agriculture occupies ~38% of the Earth's terrestrial surface, emerging as the largest use, by far, of land on the planet^{1,2}.

Foley et al (2011)

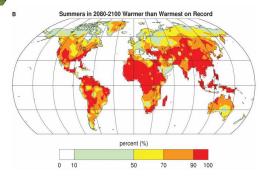
Global

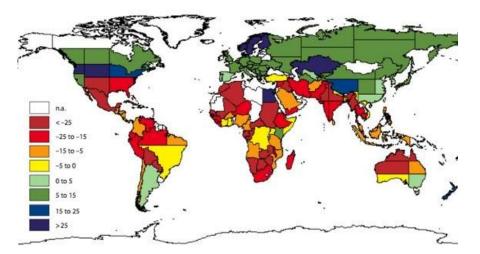
Food Security

Sustainable, healthy food for all

Is Europe immune from global food insecurity?

Germany: The Melander family - 4 mouths \$500.07 per week





Chad: The Aboubakar family - 6 mouths \$1.23 per week

Europe and the rest of the world

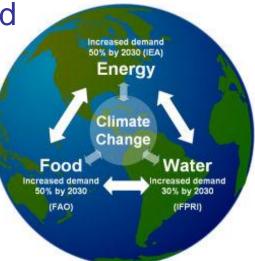
The current "virtual land area" farmed by Europe in SSA and SE Asia is equivalent to the size of Germany (~50m ha) and has increased by the size of Portugal in the last decade (~10m ha) (von Witzke & Noleppa 2010)

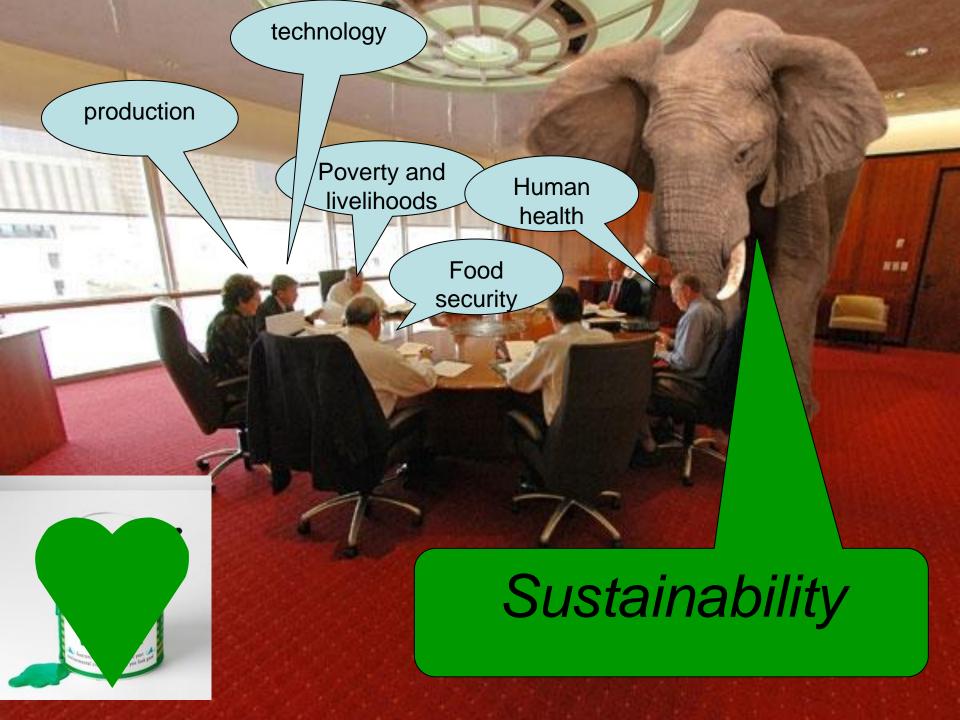
Climate's impact on food by 2080 (W Cline)

😜 Internet

🔍 100% 🛛 🔻

追 Done


The food security challenge


John Beddington's Perfect Storm

- Increase food production
 - in the face of climate change
 - whilst reducing the carbon cost of farming
 - Without taking more land

• Therefore:

 Farm same area and produce more per unit area

The sustainability challenge: to produce more food AND minimise impact on ecology

- Biodiversity is valuable but value often hidden
 - Direct values to production
 - Direct values to society
- Sustainability requires protecting biodiversity

Ecology is important: e.g. 15-20% of global food production comes from insect pollinated crops (Klein et al 2008)

Ecosystem Services (ES): biodiversity is important

- Provisioning
 - Food, fibre, fuel
- Regulating
 - Flood, water purity etc

Cultural

Pollination -

Pest control

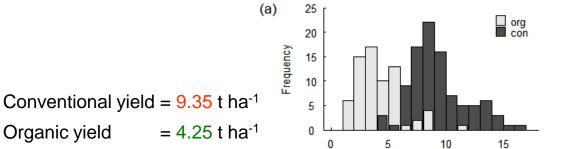
Soil fertility and C storage

Millennium Ecosystem Assessment, 2005. *Ecosystems and Human Well-being: Synthesis*. Island Press, Washington, DC.

Sustainable agricultural landscapes need not be organic

If an area ("landscape") has to produce both food and "biodiversity", do you get **more of both** if (a) you farm extensively throughout **or** (b) you separate some land to specialise in food and some to specialise in biodiversity?

Is specialising the key to sustainable production?



High production landscapes

Comparing organic farming and land sparing: maintaining yield and wildlife at a landscape scale. J A. Hodgson*, W E. Kunin, C D. Thomas, T G. Benton & D Gabriel. (2010) Ecology letters

- Gain in biodiversity converting from intensive to organic ~12%
- Loss of yield 46%
 - Land sparing (intensive plus land properly managed for wildlife) would produce more food and wildlife than land sharing
 - when O yields are <~90% C

Where do pesticides fit in?

Not using pesticides has an environmental cost

•Total worldwide pre-harvest crop losses estimated to be in excess of 40% (Yudelman et al 1998)

 Table 3
 Actual global production of eight major crops and estimated losses, 1988
 90

Сгор		Losses due to				Total
		Pathogens	Insects	Weeds	Total	attainable production
		(US\$ billions)				E 40/
Rice	106.4	33.0	45.4	34.2	112.5	51% 218.9
Wheat	64.6	14.0	10.5	14.0	38.5	37% 103.1
Barley	13.7	1.9	1.7	2.0	5.7	29% ^{19.4}
Maize	44.0	7.8	10.4	9.3	27.4	71.4
Potatoes	35.1	9.8	9.6	5.3	24.8	41% ^{71.4} _{59.9}
Soybeans	24.2	3.2	3.7	4.7	11.6	32% 35.8
Cotton	25.7	4.3	6.3	4.9	15.5	38% 41.2
Coffee	11.4	2.8	2.8	2.0	7.6	40% ^{19.0}

Pesticides are important and can be part of "sustainability agenda"

Better chemical targeting

- Specificity of action
- minimise indirect and persistent effects
- Best practice
- Work with the environment
 - Enhance natural pest control
 - Ensure proper use: keep PPPs away from non-cropped areas and ground water
- "sustainable landscapes"

Conclusions

- We face a severe challenge: producing more food, not using more land, whilst reducing the environmental footprint
- Great need for innovation in agronomy, agri-chemicals, agriecology, crop biotech, waste, consumption etc
- Each area can play a part, but all need to work in concert to ensure sustainable food security

"Food security, nutrition and sustainable agriculture must remain a priority on the political agenda, to be addressed through a cross-cutting and inclusive approach, relevant to all stakeholders at global, regional and national level ." [G8 statement July 2009]

